撰文|王善钦
2022年7月12日,韦布望远镜(James Webb Space Telescope,简称JWST或"韦布")得到的第一批图像在万众瞩目的盛况中被正式公布。这批照片不仅震撼了天文圈子里的专业人士,也震撼了圈外的众多吃瓜群众。
图:2016年,被拼装好的韦布的主镜以及被折叠的副镜与支架。丨图源:NASA
然而,一瓜未落,一瓜又起:7月20日,哈佛大学的天文学家领衔的一个合作小组宣布,他们在韦布拍摄的图像中发现了一个破纪录的星系:它在宇宙大爆炸后大约3.3亿年之后就已形成,是至今为止被发现的最古老的星系。
如何确定天体的红移?
红移是测量天体距离与年龄的最关键依据之一。由于天体自身的运动或宇宙自身的膨胀,天体发出的光波会发生变化。如果光波变长,就是红移;如果光波变短,就是负的红移,即蓝移。
这样取名是时代所限:100多年前的天文学家能够观测的波长基本上限于可见光,而可见光中红光的波长最长,蓝紫光的波长最短。因此其他颜色的可见光朝着红色一端移动,就是红移。随着观测波长范围的扩大,天文学家早已观测到红光朝着红外移动的现象。不过,根据惯例,这样的移动依然被称为"红移",而不是"红外移"。我们只需要记住:"红移"泛指波长变长。
天体发出的光包含众多元素的原子发出的辐射。这些辐射由原子内的电子的跃迁导致,它们都有固定的波长。天体发出的部分光在前往地球的过程中,某些波段的辐射被自身大气或星际介质吸收后,强度变弱,显示为吸收线。
测量到的天体的光谱中,如果某种元素的某条吸收线的波长与实验室测出的波长不一样,就说明其产生红移或蓝移。将二者相减,再除以实验室测出的波长,就是红移或蓝移的值。
图:吸收线(图中暗线)发生红移的示意图。箭头表示谱线发生的移动。丨图源:Georg Wiora
例如,氢原子的电子从第2、3、4、5、6轨道跃迁到第1轨道(基态),发出的辐射的波长依次为121.57纳米、102.57纳米、97.254纳米、94.974纳米与93.780纳米,这就是著名的"莱曼线系"的前几条。这些线也分别被称为莱曼α线、莱曼β线、莱曼γ线,等等。如果我们观测到某个天体的莱曼α线的波长成为1215.7纳米,那么我们就可以将1215.7减去其实验室里测出的波长121.57,再除以121.57,得到的数字9就是红移的值。
一些遥远星系发出的辐射在穿过众多富含氢的星系际分子云时,里面包含的莱曼α线(以及其他莱曼线)会被分子云内的氢严重吸收,使其亮度出现断崖式的下跌,导致波长等于和短于莱曼α线的辐射的亮度远低于其他波长上的亮度。这样的星系被称为"莱曼断裂星系"(Lyman-break galaxies,LBG)。
观测到莱曼断裂星系后,将断裂处的波长测出,再与实验室中的莱曼α线的波长(121.57纳米)对比,就可以计算出其红移。实际上的操作当然要更复杂一些:通过模型拟合,得到其理论能谱,从而确定出莱曼断裂的具体波长,再计算其红移。
曾经的冠军:GN-z11
此前,天文学家在哈勃拍摄的图像中发现的最古老的星系是GN-z11。这个编号中的G代表"大型天文台宇宙起源深度巡天"(The Great Observatories Origins Deep Survey,GOODS),这是一个由哈勃空间望远镜(以下简称"哈勃")与一些空间X射线望远镜及地面望远镜联合执行多波段观测的。GOODS观测南与北两个特定天区,分别用S和N表示。所以GN代表这个项目观测的北天区。